Gate A device that
performs a basic operation
on electrical signals,
accepting one or more input
signals and producing a
single output signal

Circuit A combination of
interacting gates designed
to accomplish a specific
logical function

Boolean algebra A math-
ematical notation for
expressing two-valued
logical functions

l.ogic diagram A graph-
ical representation of a
circuit; each type of gate
has its own symbol

Truth table A table
showing all possible input
values and the associated
output values

Computers and Electricity

Any given electronic signal has a level of voltage. As we mentioned in the
last chapter, we distinguish between the two values of interest (binary 0
and 1) by the voltage level of a signal. In general, a voltage level in the
range of 0 to 2 volts is considered “low” and is interpreted as a binary 0. A
signal in the 2- to S-volt range is considered “high” and is interpreted as a
binary 1. Signals in a computer are constrained to be within one range or
the other.

A gate is a device that performs a basic operation on electrical signals.
It accepts one or more input signals and produces a single output signal.
Several types of gates exist; we examine the six most fundamental types in
this chapter. Fach type of gate performs a particular logical function.

Gates are combined into circuits to perform more complicated tasks.
For example, circuits can be designed to perform arithmetic and to store
values. In a circuit, the output value of one gate often serves as the input
value for one or more other gates. The flow of electricity through a circuit
is controlled by the carefully designed logic of the interacting gates.

Three different, but equally powerful, notational methods are used to
describe the behavior of gates and circuits:

= Boolean expressions
= Logic diagrams
= Truth tables

We examine all three types of representation during our discussion of
gates and circuits.

The English mathematician George Boole invented a form of algebra
in which variables and functions take on only one of two possible values (0
and 1). This algebra is appropriately called Boolean algebra. Expressions in
this algebraic notation are an elegant and powerful way to demonstrate the
activity of electrical circuits. Specific operations and properties in Boolean
algebra allow us to define and manipulate circuit logic using a mathemat-
ical notation. Boolean expressions will come up again in our discussions of
the programming layer in Chapters 6 through 9.

A logic diagram is a graphical representation of a circuit. Each type of
gate is represented by a specific graphical symbol. By connecting those
symbols in various ways, we can visually represent the logic of an entire
circuit,

A truth table defines the function of a gate by listing all possible input
combinations that the gate could encounter, along with corresponding
output. We can design more complex truth tables with sufficient rows and
columns to show how entire circuits perform for any set of input values.

4.1 Computers and Electricity

oolean algebra is named for its

inventor, English mathematician

George Boole, born in 1815. His
father, a tradesman, began teaching him
mathematics at an early age. But Boole
was initially more interested in classical
literature, languages, and religion—
interests he maintained throughout his
life. By the time he was 20, he had
taught himself French, German, and
Italian. He was well versed in the writ-
ings of Aristotle, Spinoza, Cicero, and
Dante, and wrote several philosophical papers
himself.

At 16 he took a position as a teaching assis-
tant in a private school to help support his
family. His work there plus a second teaching
job left him little time to study. A few years later,
he opened a school and began to learn higher
mathematics on his own. In spite of his lack of
formal training, his first scholarly paper was
published in the Cambridge Mathematical
Journal when he was just 24. In 1849, he was
appointed professor of mathematics at Queen’s
College in Cork, Ireland. He became chair of
mathematics and spent the rest of his career
there. Boole went on to publish more than 50
papers and several major works before he died
in 1864, at the peak of his career.

Boole’s The Mathematical Analysis of Logic
was published in 1847. It would eventually form
the basis for the development of digital com-

puters. In the book, Boole set forth
the formal axioms of logic (much
like the axioms of geometry) on
which the field of symbolic logic is
built. Boole drew on the symbols
and operations of algebra in cre-
ating his system of logic. He associ-
ated the value 1 with the universal
set (the set representing everything
in the universe) and the value 0
with the empty set, and restricted
his system to these quantities. He
then defined operations that are analogous to
subtraction, addition, and multiplication.

In 1854, Boole published An Investigation of
the Laws of Thought; on Which Are Founded the
Mathematical Theories of Logic and Probabilities.
This book described theorems built on his axioms
of logic and extended the algebra to show how
probabilities could be computed in a logical
system. Five years later, Boole published Treatise
on Differential Equations, followed by Treatise on
the Calculus of Finite Differences. The latter is one
of the cornerstones of numerical analysis, which
deals with the accuracy of computations.

Boole received little recognition and few
honors for his work. Given the importance of
Boolean algebra in modern technology, it is hard
to believe that his system of logic was not taken
seriously until the early twentieth century.
George Boole was truly one of the founders of
computer science.

Gates

What is nanoscience?

Nanoscience is the study of materials
smaller than 100 nanometers—or 1/100th the
width of a human hair strand. Two

The gates in a computer are sometimes referred to as logic gates because
each performs just one logical function. That is, each gate accepts one or
more input values and produces a single output value. Because we are
dealing with binary information, each input and output value is either 0,
corresponding to a low-voltage signal, or 1, corresponding to a
high-voltage signal. The type of gate and the input values deter-
mine the output value.

Let’s examine the processing of the following six types of
gates. We then show how they can be combined into circuits to

nanotubes—each 10 atoms wide-have been perform arithmetic operations.
used to create a simple circuit. “They're the « NOT
only thing in the world that right now has
some potential of making a switch to = AND
process information that's faster than the = OR
fastest silicon transistor,” said IBM's world- s XOR
wide director of physical science research
Tom Theis. = NAND

“If nanotechnology has the impact we a NOR

e, ell cause . . L

gﬂg‘f,{éﬂ;ﬁ?; ?Z'era'f}g”eanmtﬂ not unﬁﬁg'%e In this book we have colorized the logic diagram symbols for

original industrial Revolution,” said Richard
W. Siegel, director of Rensselaer Nanotech-

ology Center in Troy, New York.2

N

each gate to help you keep track of the various types. When we
examine full circuits with many gates, the colors will help you
) distinguish among them. In the real world, however, logic

FIGURE 4.1 Representations of a
NOT gate

diagrams are typically black and white, and the gates are distin-
guished only by their shape.

B NOT Gate

A NOT gate accepts one input value and produces one output value.
Figure 4.1 shows a NOT gate represented in three ways: as a Boolean
expression, as its logical diagram symbol, and using a truth table. In each
representation, the variable A represents the input signal, which is either 0
or 1. The variable X represents the output signal, whose value (0 or 1) is
determined by the value of A.

By definition, if the input value for a NOT gate is 0, the output value
is 1; if the input value is 1, the output is 0. A NOT gate is sometimes
referred to as an inverter because it inverts the input value.

Boolean Expression Logic Diagram Symbol Truth Table

A X A X
l> 0 1

1 0

X = A

In Boolean expressions, the NOT operation is represented by the ’

mark after the value being negated. Sometimes this operation is shown as a
horizontal bar over the value being negated. In the Boolean expression in
Figure 4.1, X is assigned the value determined by applying the NOT opera-
tion to input value A. In such an assignment statement, the variable on the
left of the equal sign takes on the value of the expression on the right-hand
side. Assignment statements are discussed further in Chapter 6.

The logic diagram symbol for a NOT gate is a triangle with a small
circle (called an inversion bubble) on the end. The input and output are
shown as lines flowing into and out of the gate. Sometimes these lines are
labeled, though not always.

The truth table in Figure 4.1 shows all possible input values for a
NOT gate as well as the corresponding output values. Because there is only
one input signal to a NOT gate, and that signal can be only a 0 or a 1,
there are only two possibilities for the column labeled A in the truth table.
The column labeled X shows the output of the gate, which is the inverse of
the input. Note that of the three representations, only the truth table actu-
ally defines the behavior of the gate for all situations.

These three notations are just different ways of representing the same
thing, For example, the result of the Boolean expression

O/

is always 1, and the result of the Boolean expression

1/

is always 0. This behavior is consistent with the values shown in the
truth table.

B AND Gate

Figure 4.2 depicts an AND gate. Unlike a NOT gate, which accepts
one input signal, an AND gate accepts two input signals. The values of
both input signals determine what the output signal will be. If the two
input values for an AND gate are both 1, the output is 1; otherwise, the
output is 0.

Boolean Expression Logic Diagram Symbol Truth Table
A X A B X
X=A"'3B 0 0 0
B 0 1 0
1 0 0
1 1 1

FIGURE 4.2 Representations of an
AND gate

1 Gates and Circuits

FIGURE 4.3 Representations of an
OR gate”

Boolean Expression Logic Diagram Symbol Truth Table
A A B X
X=A+5B X 0 0 0
B 0 1 1
1 0 1
1 1 1

The AND operation in Boolean algebra is expressed using a single dot
(+). Sometimes an asterisk (*) is used to represent this operator. Often the
operator itself is assumed. For example, A-B is often written AB.

Because there are two inputs and two possible values for each input,
four possible combinations of 1 and 0 can be provided as input to an AND
gate. Therefore, four situations can occur when the AND operator is used
in a Boolean expression:

0-0equals 0
0-1equalsO
1-0equals 0
1-1equals1

Likewise, the truth table showing the behavior of the AND gate has four
rows, showing all four possible input combinations. The output column of
the truth table is consistent with results of these Boolean expressions.

® OR Gate

Figure 4.3 shows an OR gate. Like the AND gate, the OR gate has two
inputs. If both input values are 0, the output value is 0; otherwise, the
output is 1.

The Boolean algebra OR operation is expressed using a plus sign (+).
The OR gate has two inputs, each of which can be one of two values.
Thus, as with an AND gate, there are four input combinations and there-
fore four rows in the truth table,

B XOR Gate

The XOR, or exclusive OR, gate is shown in Figure 4.4. An XOR gate
produces a 0 if its two inputs are the same, and a 1 otherwise. Note the
difference between the XOR gate and the OR gate; they differ in only one
input situation. When both input signals are 1, the OR gate produces a 1
and the XOR produces a 0.

Sometimes the regular OR gate is referred to as the inclusive OR,
because it produces a 1 if either or both of its inputs is a 1. The XOR

Boolean Expression Logic Diagram Symbol Truth Table
A A B X
X = A®B :}DJ 0 0 0
B 0 1 1
1 0 1
1 1 0

produces a 1 only if its inputs are mixed (one 1 and one 0). Think of the
XOR gate as saying, “When I say or, I mean one or the other, not both.”

The Boolean algebra symbol @ is sometimes used to express the XOR
operation. In addition, the XOR operation can be expressed using the
other operators; we leave that as an exercise.

Note that the logic diagram symbol for the XOR gate is just like the
symbol for an OR gate except that it has an extra curved line connecting
its input signals.

B NAND and NOR Gates

The NAND gate is shown in Figure 4.5 and the NOR gate is shown in
Figure 4.6. Each accepts two input values. The NAND and NOR gates are
essentially the opposites of the AND and OR gates, respectively. That is,
the output of a NAND gate is the same as if you took the output of an
AND gate and put it through an inverter (a NOT gate).

Boolean Expression Logic Diagram Symbol Truth Table
A X A B X
X=(A" B 0 0 1
B 0 1 1
1 0 1
1 1 0

Boolean Expression Logic Diagram Symbol Truth Table
A X A B X
X = (A + B)!] 0 0 1
B 0 1 0
1 0 0
1 1 0

FIGURE 4.4 Representations of an
XOR gate

FIGURE 4.5 Representations of a
NAND gate

FIGURE 4.6 Representations of a
NOR gate

No specific symbols are used to express the NAND and NOR opera-
tions in Boolean algebra. Instead, we rely on their definitions to express
the concepts. That is, the Boolean algebra expression for NAND is the
negation of an AND operation. Likewise, the Boolean algebra expression
for NOR is the negation of an OR operation.

The logic diagram symbols for the NAND and NOR gates are the
same as those for the AND and OR gates except that the NAND and
NOR symbols use an inversion bubble (to indicate the negation). Compare
the output columns for the truth tables for the AND and NAND gates.
They are opposites, when you look at them row by row. The same is true
for the OR and NOR gates.

® Review of Gate Processing

We’ve looked at six specific types of gates. It may seem to be a difficult
task to keep them straight and remember how they all work—but that
probably depends on how you think about it. We definitely don’t
encourage you to try to memorize truth tables. The processing of these
gates can be described briefly in general terms. If you think of them in that
way, you can produce the appropriate truth table any time you need it.

Let’s review the processing of each gate. Some of these descriptions are
stated in terms of which input values cause the gate to produce a 1 as
output; in any other case, the gate produces a 0.

= A NOT gate inverts its single input value.

= An AND gate produces 1 if both input values are 1.

» An OR gate produces 1 if one or the other or both input values
are 1,

= An XOR gate produces 1 if one or the other (but not both) input
values are 1,

» A NAND gate produces the opposite results of an AND gate.

» A NOR gate produces the opposite results of an OR gate.

With these general processing rules in mind, all that’s left is to remember
the Boolean operators and the logic diagram symbols. Keep in mind that
several logic diagram symbols are variations on other logic diagram
symbols. Also, remember that the coloring of the gates in this book is
meant to help you to keep track of the various gate types; traditionally,
they are simply black-and-white diagrams.

B Gates with More Inputs

Gates can be designed to accept three or more input values. A three-input
AND gate, for example, produces an output of 1 only if all input values
are 1. A three-input OR gate produces an output of 1 if any input value is
1. These definitions are consistent with the two-input versions of these
gates. Figure 4.7 shows an AND gate with three input signals.

4.3 Constructing Gates

Boolean Expression Logic Diagram Symbol Truth Table
A X A B c X
X=A+B"*C B 0 0 0 0
c 0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

There are 23 or 8 possible input combinations for a gate with three
inputs. Recall from Chapter 3 that there are 2" combinations of 1 and 0
for n distinct input values. This number determines how many rows
appear in the truth table.

For the logic diagram symbol, we simply add a third input signal to
the original symbol. For a Boolean expression, we repeat the AND opera-
tion to represent the third value.

€% Constructing Gates

Before we examine how gates are connected to form circuits, let’s examine,
at an even more basic level, how a gate is constructed to control the flow
of electricity.

® Transistors

A gate uses one or more transistors to establish how the input values map
to the output value. A transistor is a device that acts, depending on the
voltage level of the input signal, either as a wire that conducts electricity or
as a resistor that blocks the flow of electricity. A transistor has no moving
parts, yet it acts like a switch. It is made of a semiconductor material,
which is neither a particularly good conductor of electricity (unlike copper)
nor a particularly good insulator (unlike rubber). Usually silicon is used to
create transistors.

In Chapter 1, we mentioned that the invention of transistors, which
occurred in 1947 at Bell Labs, changed the face of technology, ushering in
the second generation of computer hardware. Before the advent of transis-
tors, digital circuits used vacuum tubes, which dissipated a great deal of
heat and often failed, requiring replacement. Transistors are much smaller
than vacuum tubes and require less energy to operate. They can switch
states in a few nanoseconds. Computing, as we know it today, is largely
due to the invention of the transistor.

99

FIGURE 4.7 Representations of a
three-input AND gate

Transistor A device that
acts either as a wire or a
resistor, depending on the
voltage level of an input
signal

Semiconductor Material
such as silicon that is
neither a good conductor
nor a good insulator

