Property of Boolean Algebra $A \oplus B=A^{\prime} B+A B^{\prime}$

Properties of Boolean Algebra AND OR

$A(1)=A$ $\mathrm{A}+0=\mathrm{A}$
$A B=B A$ $A+B=B+A$
$(\mathrm{AB}) \mathrm{C}=\mathrm{A}(\mathrm{BC})$ $(A+B)+C=A+(B+C)$
$A(B+C)=A B+A C$ $A+B C=(A+B)(A+C)$
Distributive Property

Properties of Boolean Algebra AND OR

$A(1)=A$
$A B=B A$
$(A B) C=A(B C)$
$A(B+C)=A B+A C$
Distributive Property

Properties of Boolean Algebra AND OR

$A(1)=A$
$A B=B A$
$(\mathrm{AB}) \mathrm{C}=\mathrm{A}(\mathrm{BC})$
$A(B+C)=A B+A C$

$$
A A=A
$$

$$
A^{\prime}=0
$$

$$
(A B)^{\prime}=A^{\prime}+B^{\prime}
$$

DeMorgan's Laws

$$
A+0=A
$$

$$
A+B=B+A
$$

$$
(A+B)+C=A+(B+C)
$$

$$
A+B C=(A+B)(A+C)
$$

$$
\begin{gathered}
A+A=A \\
A+A^{\prime}=1 \\
(A+B)^{\prime}=A^{\prime} B^{\prime}
\end{gathered}
$$

Properties of Boolean Algebra XOR

$A \oplus B=A B^{\prime}+A^{\prime} B$
$(A \oplus B)^{\prime}=A B+A^{\prime} B^{\prime}$

Is this an XOR?

Is this an XOR?

Is this an XOR?

Yep!

