152

Machine language The
language made up of binary-
coded instructions that is
used directly by the
computer

CHAPTER 6 Low-Level Programming Languages and Pseudocode

@XP Computer Operations

The programming languages we use must mirror the types of operations
that a computer can perform. So let’s begin our discussion by repeating the
definition of a computer: A computer is a programmable electronic device
that can store, retrieve, and process data.

The operational words here are programmable, store, retrieve, and
process. In a previous chapter we pointed out the importance of the real-
ization that data and instructions to manipulate the data are logically the
same and could be stored in the same place. That is what the word
programmable means in this context. The instructions that manipulate
data are stored within the machine along with the data. To change what
the computer does to the data, we change the instructions.

Store, retrieve, and process are actions that the computer can perform
on data. That is, the instructions that the control unit executes can store
data into the memory of the machine, retrieve data from the memory of
the machine, and process the data in some way in the arithmetic/logic unit.
The word process is very general. At the machine level, processing involves
performing arithmetic and logical operations on data values.

Where does the data that gets stored in the computer memory come
from? How does the human ever get to see what is stored there, such as
the results of some calculation? There are other instructions that specify
the interaction between an input device and the CPU and between the CPU
and an output device.

¥ Machine Language

As we pointed out in Chapter 1, the only programming instructions that a
computer actually carries out are those written using machine language, the
instructions built into the hardware of a particular computer. Initially
humans had no choice except to write programs in machine language
because other programming languages had not yet been invented.

So how are computer instructions represented? Recall that every
processor type has its own set of specific machine instructions. These are
the only instructions the processor can actually carry out. Because a finite
number of instructions exist, the processor designers simply list the instruc-
tions and assign them a binary code that is used to represent them. This is
similar to the approach taken when representing character data, as
described in Chapter 3.

The relationship between the processor and the instructions it can
carry out is completely integrated. The electronics of the CPU inherently
recognize the binary representations of the specific commands, so there is

6.2 Machine Language

153

no actual list of commands the computer must consult. Instead,
the CPU embodies the list in its design.
Each machine-language instruction performs only one very " Managing endangered species

low-level task. Each small step in a process must be explicitly ~ £00s have established captive populations of

coded in machine language. Even the small task of adding two

endangered animals to save them from
extinction, but they need to have a good

numbers together must be broken down into smaller steps: enter distribution of ages and genetic diversity to
a number into the accumulator, add a number to it, save the Protect the species against diseases and

result. Then these three instructions must be written in binary,

inbreeding. A computerized database of all
captive animals that contains dates of births

and the programmer has to remember which combination of and deaths, gender, parentage, and location
binary digits corresponds to which instruction. As we mentioned ~ €nables scientists to measure impartant

in Chapter 1, machine-language programmers have to be very
good with numbers and very detail oriented.

factors governing the welfare of a species,
such as reproductive and survival rates,
degree of inbreeding, and loss of genetic

However, we can’t leave you with the impression that only ~ diversity. For example, the Minnesota Zoolog-
& el it ; bine | T s ical Garden coordinates the International
mathematicians can write programs in machine 'anguage. ti1s Species Inventory System (ISIS). ISIS
true that very few programs are written in machine language provides global information on many

today, primarily because they represent an inefficient use of a different species of animals, including more

programmer’s time. Although most programs are written in

than 163,000 living animals, and many
endangered animals are being bred in

higher-level languages and then translated into machine \captivity due to its help.)

language (a process we describe later in this chapter), every piece

of software is actually implemented in machine code. Under-

standing even just a little about this level will make you a more informed
user. In addition, this experience emphasizes the basic definition of a
computer and makes you appreciate the ease with which people interact
with computers today.

m Pep/8: A Virtual Computer

By definition, machine code differs from machine to machine. Recall that
just as each lock has a specific key that opens it, each type of computer has
a specific set of operations that it can execute, called the computer’s
machine language. That is, each type of CPU has its own machine
language that it understands. So how can we give each of you the experi-
ence of using machine language when you may be working on different
machines? We solve that problem by using a virtual computer. A virtual
computer is a hypothetical machine—in this case, one that is designed to
contain the important features of real computers that we want to illustrate.
Pep/8, designed by Stanley Warford, is the virtual machine that we use
here.!

Pep/8 has 39 machine-language instructions. This means that a program
for Pep/8 must be a sequence consisting of a combination of these instruc-
tions. Don’t panic: We will not ask you to understand and remember 39
sequences of binary bits! We merely plan to examine a few of these instruc-
tions, and we will not ask you to memorize any of them.

Virtual computer
(machine) A hypothetical
machine designed to illus-
trate important features of a
real machine

154

FIGURE 6.1

Pep/8's architecture

CHAPTER 6 Low-Level Programming Languages and Pseudocode

Important Features Reflected in Pep/8
The memory unit of the Pep/8 is made up of 65,536 bytes of storage. The
bytes are numbered from 0 through 65,535 (decimal). Recall that each
byte contains 8 bits, so we can describe the bit pattern in a byte using 2
hexadecimal digits. (Refer to Chapter 2 for more information on hexadec-
imal digits.) The word length in Pep/8 is 2 bytes, or 16 bits. Thus the infor-
mation that flows into and out of the arithmetic/logic unit (ALU) is 16 bits
in length.

Recall from Chapter $ that a register is a small area of storage in the
ALU of the CPU that holds special data and intermediate values. Pep/8 has
seven registers, three of which we focus on at this point:

= The program counter (PC), which contains the address of the next
instruction to be executed

= The instruction register (IR), which contains a copy of the instruc-
tion being executed

= The accumulator (A register)

The accumulator is used to hold data and the results of operations; it is the
special storage register referred in Chapter 5 in the discussion of the ALU.

We realize that this is a lot of detailed information, but don’t despair!
Remember that our goal is to give you a feel for what is actually
happening at the lowest level of computer processing. By necessity, that
processing keeps track of many details.

Figure 6.1 shows a diagram of Pep8’s CPU and memory. Notice that
the addresses in memory appear in orange. This color is intended to

Pep/8’s CPU (as discussed in this chapter)

A register (accumulator) I

Program counter (PC) |

|
|
Instruction register (IR) {l I
|

Pep/8’s Memory

0000
0001
0002

FFFE
FFFF

6.2 Machine Language

emphasize that the addresses themselves are not stored in memory, but
rather that they name the individual bytes of memory. We refer to any
particular byte in memory by its address.

Before we go on, let’s review some aspects of binary and hexadecimal
numbers. The largest decimal value that can be represented in a byte is
255. It occurs when all of the bits are 1s: 11111111 in binary is FF in
hexadecimal and 255 in decimal. The largest decimal value that can be
represented in a word (16 bits) is 65,535. It occurs when all 16 bits are 1s:
1111111111111111 in binary is FFFF in hexadecimal and 65,535 in
decimal. If we represent both positive and negative numbers, we lose a bit
in the magnitude (because one is used for the sign), so we can represent
values ranging from —7FFF to +7FFF in hexadecimal, or —32,767 to
+32,767 in decimal.

This information is important when working with the Pep/8 machine.
The number of bits we have available determines the size of the numbers
we can work with.

Instruction Format

We have talked about instructions going into the instruction register, being
decoded, and being executed. Now we are ready to look at a set (or subset)
of concrete instructions that a computer can execute. First, however, we
need to examine the format of an instruction in Pep/8.

Figure 6.2(a) shows the format for an instruction in Pep/8. There are
two parts to an instruction: the instruction specifier and (optionally) the
16-bit operand specifier. The instruction specifier indicates which opera-
tion is to be carried out, such as “add a number to a value already stored
in a register,” and how to interpret just where the operand is. The operand

Instruclionl | | I | | | I |
specifier

oaior | L LT TTTTTITTTITTT]

(a) The two parts of an instruction

EEEEN

L Addressing mode

Register specifier or 5th bit of opcode
Operation code

(b) The instruction specifier part of an instruction

155

FIGURE 6.2 Pep/8 instruction
format

FIGURE 6.3 Difference between
immediate addressing mode and
direct addressing mode

CHAPTER 6 Low-Level Programming Languages and Pseudocode

specifier (the second and third bytes of the instruction) holds either the
operand itself or the address of where the operand is to be found. Some
instructions do not use the operand specifier.

The format of the instruction specifier varies depending on the number of
bits used to represent a particular operation. In Pep/8, operation codes (called
opcodes) vary from 4 bits to 8 bits long. The opcodes that we cover are 4 or 5
bits long, with the fifth bit of 4-bit opcodes used to specify which register to
use. The register specifier is 0 for register A (the accumulator), which is the
only register that we will use. Thus the register specifier is only color coded in
our diagrams when it is part of the opcode. [See Figure 6.2(b).]

The 3-bit addressing mode specifier (shaded green) indicates how to
interpret the operand part of the instruction. If the addressing mode is 000,
the operand is in the operand specifier of the instruction. This addressing
mode is called immediate (i). If the addressing mode is 001, the operand is
the memory address named in the operand specifier. This addressing mode
is called direct (d). (Other addressing modes also exist, but we do not
cover them here.) The distinction between the immediate addressing mode
and the direct addressing mode is very important because it determines
where the data involved in the operation is stored or is to be stored. See
Figure 6.3. Locations that contain addresses are shaded in orange;
operands are shaded in gray.

Instruction specifier l | | I | | 0 | 0 | 0 I

-
T T e e

(a) Immediate addressing mode : operand is shaded gray

Operand specifier

Instruction specifier | | I | I 0 I OI 1

Address of data

AR R

Operand specifier I I I I

Data

EEEREEDRREEEEOEER

(b) Direct addressing mode : operand is shaded gray

6.2 Machine Language

Instructions that do not have an operand (data to be manipulated) are
called unary instructions; they do not have an operand specifier. That is,
unary instructions are only 1 byte long rather than 3 bytes long.

Some Sample Instructions

Let’s look at some specific instructions in isolation and then put them
together to write a program. Figure 6.4 contains the 4-bit operation code
(or opcode) for the operations we are covering.

0000 Stop execution During the fetch-execute cycle, when the operation
code is all zeros, the program halts. Stop is a unary instruction, so it occu-
pies only one byte. The three rightmost bits in the byte are ignored.

1100 Load the operand into the A register This instruction loads one
word (two bytes) into the A register. The mode specifier determines where
the word is located. Thus the load opcode has different meanings
depending on the addressing mode specifier. The mode specifier determines
whether the value to be loaded is in the operand part of the instruction
(the second and third bytes of the instruction) or is in the place named in
the operand.

Let’s look at concrete examples of each of these combinations. Here is
the first 3-byte instruction:

Instruction specifier | 1 | 1 | 0 | 0 | 0 | 0 | 0 | OJ

Operand specifier |0|0|0|0|0|0|0l0|0|0|0|0|0|1|1|1|

The addressing mode is immediate, meaning that the value to be loaded
into the A register is in the operand specifier. That is, the data is in the

Opcode Meaning of Instruction
0000 Stop execution
1100 Load the operand into the A register
1110 Store the contents of the A register into the operand
0111 Add the operand to the A register
1000 Subtract the operand to the A register

01001 Character input to the operand

01010 Character output from the operand

FIGURE 6.4 Subset of Pep/8
instructions

CHAPTER 6 Low-Level Programming Languages and Pseudocode

operand specifier, so it is shaded gray. After execution of. this instruction,
the contents of the second and third bytes of the instruction (the operand
specifier) would be loaded into the A register (the accumulator). That is,
the A register would contain 0007 and the original contents of A would be
lost.

Here is another load instruction:

Instruction specifier | 1 | 1 | 0 l 0| 0 I OI OI 1 |

operand speiier [0]0] 0] ooJoJofoJoJo o 1[1[1]1]1]

The addressing mode is direct, which means that the operand itself is not in
the operand specifier (second and third bytes of the instruction); instee'id, the
operand specifier holds the address (orange) of where the operand re51de§ in
memory. Thus, when this instruction is executed, the contents of location
001F would be loaded into the A register. Note that we have shaded the bits
that represent a memory address in orange just as we have used orange for
other addresses. The A register holds a word (2 bytes), so when an address is
used to specify a word (rather than a single byte) as in this case, the address
given is of the leftmost byte in the word. Thus the contents of adjacent loca-
tions 001F and 0020 are loaded into the A register. The contents of the
operand (001F and 0020) are not changed.

1110 Store the A register to the operand This instruction stores the
contents of the A register into the location specified in the operand, which
is either the operand itself or the place named in the operand.

Instruction specifier Fl | 1 | 1 | 0| 0 | 0 | OI O|

operand specifer [0]0]0]0[0[0Jo[ofoJoJofoJo]1]1]1]

This instruction stores the value in the A register into the operand specifier
of the instruction itself. The operand is gray to indicate that it consists of
data.

Instruction specifier FI 1 | 1 I OI OI 0 l OI 1 |

Operand specifier |0|0|0|0|O|0I0|0|0|0|0|0|1|OI1|0|

6.2 Machine Language

This instruction stores the contents of the A register into the word begin-
ning at location 000A. It is invalid to use an immediate addressing mode
with a store opcode; that is, we cannot try to store the contents of a
register into the operand specifier.

0111 Add the operand to the A register Like the load operation, the add
operation uses the addressing mode specifier, giving alternative interpreta-
tions. The two alternatives for this instruction are shown below with the
explanation following each instruction.

Instruction specifier | 0 | qi | 1 l 1 l 0 LO l 0 I 0 I

operand specifier | 0[0[0[0[0[0[1[0[o[o[o]o]1]o]1]0]

The contents of the second and third bytes of the instruction (the operand
specifier) are added to the contents of the A register (20A in hex). Thus we
have shaded the operand specifier to show that it is data.

Instruction specifier | 0 | 1 | 1 | 1 l 0 l OI Ol 1 |

Operand specifier | 0|0|0[0[0]0]1]0o[o[o[o]o]1]o]1]o0]

Because the address mode specifier is direct, the contents of the operand
specified in the second and third bytes of the instruction (location 020A)
are added into the A register.

1000 Subtract the operand This instruction is just like the add operation
except that the operand is subtracted from the A register rather than
added. As with the load and add operations, there are variations of this
instruction depending on the addressing mode.

0100 Character input to the operand This instruction allows the program
to enter an ASCII character from the input device while the program is
running. Only direct addressing is allowed, so the character is stored in the
address shown in the operand specifier.

Instruction specifier I ol 1 | OI O| 1 | 0 I O| 1 |

Operand specifier |0|0|0|0|0|0|0|0|0|0|0|0|1|0|1|0|

CHAPTER & Low-Level Programming Languages and Pseudocode

This instruction reads an ASCII character from the input device and stores
it into location 000A.

0101 Character output from the operand This instruction sends an
ASCII character to the output device while the program is running. The
addressing mode may be either immediate or direct.

Instruction specifier m1 l O| 1 I 0 I 0 I 0 | 0 |

operand speciier [0]0J0Jo]0]oJoJoJo[1 o ofo[o[o[1]

Because immediate addressing is specified, this instruction writes out the
ASCII character stored in the operand specifier. The operand specifier
contains 1000001, which is 41 in hex and 65 in decimal. The ASCII char-
acter corresponding to that value is ‘A’, so the letter A is written to the
screen.

Instruction specifier W*] ‘ ()l 1 | 0 | 0 I 0 | ﬂ

Operand specifier |O|Ol0|0l0|0|0|0|0|0|0|0|1|0|1|£I

Because direct addressing is used, this instruction writes out the ASCII
character stored in the location named in the operand specifier, location
000A. What is written? We cannot say unless we know the contents of
location 000A. The ASCII character corresponding to whatever is stored at
that location is printed.

¥ A Program Example

We are now ready to write our first machine-language program: Let’s write
“Hello” on the screen. There are six instructions in this program: five to
write out a character and one to indicate the end of the process. The
instruction to write a character on the screen is 0101, the “Character
output from the operand” operation. Should we store the characters in
memory and write them using direct addressing mode, or should we just
store them in the operand specifier and use immediate addressing mode?
Let’s use immediate addressing here and leave direct addressing as an exer-
cise. This means that the addressing mode specifier is 000 and the ASCII
code for the letter goes into the third byte of the instruction.

6.3 A Program Example

Action Binary Instruction Hex Instruction

Write ‘4> 01010000 50
0000000001001000 0048

Write “¢” 01010000 50
0000000001100101 0065

Write “I” 01010000 50
0000000001101100 006C

Write “I” 01010000 50
0000000001101100 006C

Write “o0” 01010000 50
0000000001101111 006F

Stop 00000000 00

The machine-language program is shown in binary in the second
column and in hexadecimal in the third column. We must construct the
operation specifier in binary because it is made up of a 4-bit opcode, a 1-
bit register specifier, and a 3-bit addressing mode specifier. Once we have
the complete 8 bits, we can convert the instruction to hexadecimal. Alter-
natively, we could construct the operand specifier directly in hexadecimal.

We used double quotes when referring to a collection of characters like
“Hello” and single quotes when referring to a single character. This
pattern is commonly used in programming languages, so we follow this
convention here.

® Hand Simulation

Let’s simulate this program’s execution by following the steps of the
fetch—execute cycle. Such traces by hand really drive home the steps that
the computer carries out.

Recall the four steps in the fetch—execute cycle:

1. Fetch the next instruction (from the place named in the program
counter).

2. Decode the instruction (and update the program counter).

. Get data (operand) if needed.

4. Execute the instruction.

W

162

CHAPTER 6 Low-Level Programming Languages and Pseudocode

There are six instructions in our program. Let’s assume that'they are in
contiguous places in memory, with the first instruction S'Fored in memory
locations 0000-0002. Execution begins by loading 0000 into the program
counter (PC). At each stage of execution, let’s examine the PC (shown in
yellow) and the instruction register (IR). The program does not access the
A register, so we do not bother to show it. At the end of the first fetch, the
PC and the IR look like the following diagram. (We continue to use color
to emphasize the addresses, opcode, address mode specifier, gnd dat.a.)
Notice that the program counter is incremented as soon as the instruction

has been accessed.

Program counter (PC) 0|l0|0|0 0I0|0|O|0|0|1|ﬂ
o|1|0[1(0
of1]ofo[1]o]ofo]

0(0|0|0|0|0O|O
This instruction is decoded as a “Write character to output” instruction
using immediate addressing mode. Because this instruction takes 3 byte§,
the PC is incremented by 3. The data is retrieved from the operand speci-
fier in the IR, the instruction is executed, and ‘H’ is written on the screen.
The second fetch is executed and the PC and IR are as follows:

o
o

Instruction register (IR)

(=]

ofo[ofofo]olo]o]o[1]1]0]
ol1lol1lolo[o]0
olololololofofofo]1]1]o o] 1]o]1]

Program counter (PC)

Instruction register (IR)

This instruction is decoded as another “Write character to output” instruc-
tion using immediate addressing mode. The instruction tak(?s 3 byt(::s, s0
the PC is again incremented by 3. The data is retrieved, the instruction is
executed, and ‘e’ is written on the screen.

The next three instructions are executed exactly the same way. After
the 0’ has been written, the PC and IR look as follows:

Program counter (PC) 0|0|0|0O 0|O|O|O|1|1|1|l|

olofofofofo]o]o
EHEREER

The opcode is decoded as a “Stop” instruction, so the contents of the
addressing mode and the operand specifier are ignored. At this point, the
fetch—-execute cycle stops.

Instruction register (IR)

6.3 A Program Example

_ M

163

® Pep/8 Simulator e
N

Recall that the instructions are written in the Pep/8 machine
language, which doesn’t correspond to any particular CPU’s

igerian check scams
In Jupe 2008, Edna Fiedler of Olympia,
Washington, was sentenced to 2 years in

~

machine language. We have just hand simulated the program. prison and 5 years of supervised probation
Can we execute it on the computer? Yes, we can. Pep/8 is a " 231 million Nigerian check scam. In this

virtual (hypothetical) machine, but we have a simulator for the

scam, a message in broken English pleaded
for the financial help of the kind recipient. In

machine. That is, we have a program that behaves just like the all cases, the sender was a high-ranking offi-
Pep/8 virtual machine behaves. To run a program, we enter the ~ ¢1al Who had millions stashed in an inacces-

hexadecimal code byte by byte, with exactly one blank between

sible spot. If the recipient wired money for
the official's escape from his ravaged

each byte, and end the program with zz. The simulator recog- country, he or she was offered a share of the
nizes two z’s as the end of the program. Here is a screen shot of ~ MOney. The average loss to the victims of

the Pep/8 machine-language program: U

this scam was more than $5000.

J

Object Code

50 00 48 50 00 65 50 00 6C 50 00 6C 50 00
6F 00 2z

Let’s go through the steps required to enter and execute a program. We
assume that the Pep/8 simulator has been installed. To start the program,
click on the Pep8 icon. One of several screens might appear, but each
contains a section marked “Object Code.” Enter your program in this
window as described previously. You are now ready to run your program.
Go to the menu bar. Here is a shot of the portion that you need:

Click on the middle of these three icons, which calls the loader. After you
click on this icon, your program is loaded into the Pep/8 memory.

Be sure the Terminal I/O button is darkened (pressed). Now click on
the rightmost icon, which is the execute button. The program is executed
and “Hello” appears in the output window. For everything that we do in
this chapter, the Terminal I/O button should be darkened. This area is
where you input and output values.

Loader A piece of soft-
ware that takes a machine-
language program and
places it into memory

CHAPTER 6 Low-Level Programming Languages and Pseudocode

! Batch 1/O Terminal 1/O !

Input/Output: Runl.pepInOut

Hello_

Pep/8 has a feature that lets you watch what is happening in the CPU
as each instruction is executed. Here is a screen shot of the CPU after the
program has been loaded. Notice that the “Trace Program” check box has
been marked. This screen includes several boxes that we have not covered,
but you can readily see the “Program Counter,” “Instruction Register,”

and “OpCode” labels.

CPU
VI Trace Program) Trace Traps
N[o] z[o] v[o] c[o]
Accumulator @ (hex) E (dec) D (char)
Index Register W (hex) [:—O—I (dec)
Stack Pointer [FBCF | (hex) [64463] (dec)
Program Counter @ (hex)
Instruction Register [? (hex)
0101 0aaa

[Trace Load

OpCode oy (mnemonic)

‘Non-Unary

Addressing Mode Specifier
Operand Specifier (bin) (mode) Operand

[o004z || 000 I[7][ooss

When the “Trace Program” option is checked, press the Single Step
button and the first instruction will be executed. Continue pressing the
Single Step button, and you can see the register values change.

Before we leave our machine code example, let’s input two letters and
print them out in reverse order. We can choose a place to put the input as it
is read somewhere beyond the code. In this case we choose OF and 12. We
use direct addressing mode.

6.4 Assembly Language

Action Binary Instruction Hex Instruction
Input aletter 01001001 49
into location F 0000000000001000 O0O0F
Input a letter 01001001 49
into F +1 0000000000010010 0010
Write out 01010001 51
second letter 0000000000001000 0010
Write out 01010001 51
first letter 0000000000001010 000F

Stop 00000000 00

Here is the object code and output window after entering ‘A’ and ‘B’:

{ Batch I/O Terminal 1/0 !

Input/Output

X3 Assembly Language

As we pointed out in Chapter 1, the first tools developed to help the
programmer were assembly languages. Assembly languages assign
mnemonic letter codes to each machine-language instruction. The
programmer uses these letter codes in place of binary digits. The instruc-
tions in an assembly language are much like those we would use to tell
someone how to do a calculation on a hand-held calculator.

Because every program that is executed on a computer eventually must
be in the form of the computer’s machine language, a program called an
assembler reads each of the instructions in mnemonic form and translates

165

Assembly language A
low-level programming
language in which a
mnemonic represents each
of the machine-language
instructions for a particular
computer

Assembler A program
that translates an assembly-
language program in
machine code

