Problem of the Day

Design a circuit with these 2 inputs and 4 outputs

A ₁	A ₀	X ₃	X ₂	X ₁	X ₀
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

Computer Architecture

The basics

Memory

Memory is a collection of cells, each with a unique physical address

Address	Contents		
00000000	11100011		
0000001	10101001		
:	:		
•	•		
11111100	00000000		
11111101	11111111		
11111110	10101010		
11111111	00110011		

Types of Memory

RAM - Random Access Memory

- Write and read every location
- Lose everything when power goes off
- DRAM (Dynamic) has to "refresh" periodically
- SRAM (Static) doesn't, but more expensive

Types of Memory

- RAM Random Access Memory
- ROM Read Only Memory
 - Permanent can't be changed

Types of Memory

- RAM Random Access Memory
- ROM Read Only Memory
- FLASH
 - Latest version of "Programmable ROM"
 - Erase big blocks, write bits
 - "Wears out" (100K 1M cycles)

The Insight

The memory that stores DATA can also store INSTRUCTIONS that describe how to process the data!

The Insight

The memory that stores DATA can also store INSTRUCTIONS that describe how to process the data!

John Atanasoff, Clifford Berry, J Presper Eckert, John Mauchley, John von Neumann, Konrad Zuse, ...

The Insight

The memory that stores DATA can also store INSTRUCTIONS that describe how to process the data!

John Atanasoff, Clifford Berry, J Presper Eckert, John Mauchley, John von Neumann, Konrad Zuse, ...

Stored Program Computer

Central Processing Unit

Memory Data + Instructions

Connected with a "Bus"

Arithmetic / Logic Unit

- Adds, subtracts, multiplies, divides integers, signed integers, floating point
- Boolean operations like AND, OR, NOT
- Operates on data from memory and in REGISTERS

Registers

- Very high speed, special purpose memory – Only a few (16 in Intel 80x86)
- Connected directly to ALU
- Accumulator is the source and/or destination of (most) ALU operations

Control Unit

- The organizing force in the computer
- Uses two special registers
 - The Instruction Register (IR) contains the instruction that is being executed
 - The Program Counter (PC) contains the address of the next instruction to be executed

Processing Each Instruction:

- Fetch the instruction from memory
- Decode the instruction
 - figure out what to do
 - get any "operands"
 - memory location ("direct addressing")
 - number or other value to use ("immediate addressing")
- Execute the instruction

