
OS CPU Managment

"I only need it for just a second, really…"

OS Manages Resources

• Memory
• CPU

– Processes

• I/O Devices
• Information

– Files

Sharing
Nicely

Process Management

New TaskNew TaskNew TaskNew Task

Process Management

New TaskNew TaskNew TaskNew Task

ReadyReadyReadyReady

Process Management

New TaskNew TaskNew TaskNew Task

ReadyReadyReadyReady

RunningRunningRunningRunning
Dispatch

Process Management

New TaskNew TaskNew TaskNew Task

ReadyReadyReadyReady

TerminatedTerminatedTerminatedTerminatedComplete

RunningRunningRunningRunning
Dispatch

Process Management

New TaskNew TaskNew TaskNew Task

BlockedBlockedBlockedBlocked

I/O or Event Wait

ReadyReadyReadyReady

RunningRunningRunningRunning
Dispatch

TerminatedTerminatedTerminatedTerminatedComplete

Process Management

New TaskNew TaskNew TaskNew Task

BlockedBlockedBlockedBlocked

I/O or Event Wait

I/O or Event
Complete

ReadyReadyReadyReady

RunningRunningRunningRunning
Dispatch

TerminatedTerminatedTerminatedTerminatedComplete

Context Switch

br main
x: .word 0
main: lda x,d

deci x,d
breq done
adda x,d
sta x,d
br main
...

br main
x: .word 0
main: lda x,d

deci x,d
breq done
adda x,d
sta x,d
br main
...

NEW TASK NEW TASK

Context Switch

br main
x: .word 0
main: lda x,d

deci x,d
breq done
adda x,d
sta x,d
br main
...

br main
x: .word 0
main: lda x,d

deci x,d
breq done
adda x,d
sta x,d
br main
...

RUNNING NEW TASK

Context Switch

br main
x: .word 0
main: lda x,d

deci x,d
breq done
adda x,d
sta x,d
br main
...

br main
x: .word 0
main: lda x,d

deci x,d
breq done
adda x,d
sta x,d
br main
...

1. Save whatever is in Accumulator
2. Save whatever is in Program Counter

BLOCKED NEW TASK

Context Switch

br main
x: .word 0
main: lda x,d

deci x,d
breq done
adda x,d
sta x,d
br main
...

br main
x: .word 0
main: lda x,d

deci x,d
breq done
adda x,d
sta x,d
br main
...

1. Load Base register for P2
2. Clear Accumulator
3. Set Program Counter to 0
4. Go!

BLOCKED NEW TASK

Context Switch

br main
x: .word 0
main: lda x,d

deci x,d
breq done
adda x,d
sta x,d
br main
...

br main
x: .word 0
main: lda x,d

deci x,d
breq done
adda x,d
sta x,d
br main
...

BLOCKED RUNNING

Context Switch

br main
x: .word 0
main: lda x,d

deci x,d
breq done
adda x,d
sta x,d
br main
...

br main
x: .word 0
main: lda x,d

deci x,d
breq done
adda x,d
sta x,d
br main
...

1. Save whatever is in Accumulator
2. Save whatever is in Program Counter

BLOCKED BLOCKED

Context Switch

br main
x: .word 0
main: lda x,d

deci x,d
breq done
adda x,d
sta x,d
br main
...

br main
x: .word 0
main: lda x,d

deci x,d
breq done
adda x,d
sta x,d
br main
...

1. Load Base register for P1
2. Restore P1 Accumulator
3. Restore P1 Program Counter
4. Go!

READY BLOCKED

If more than one process
is READY, who goes next?

First Come, First Served

Job Run time

1 80

2 100

3 150

4 50

First Come, First Served

80

80

Job Run time Delay Turnaround

1 80 0 80

2 100

3 150

4 50

First Come, First Served

80 100

80 180

Job Run time Delay Turnaround

1 80 0 80

2 100 80 180

3 150

4 50

First Come, First Served

80 100 150

80 180 330

Job Run time Delay Turnaround

1 80 0 80

2 100 80 180

3 150 180 330

4 50

First Come, First Served

80 100 150 50

80 180 330 380

Job Run time Delay Turnaround

1 80 0 80

2 100 80 180

3 150 180 330

4 50 330 380

First Come, First Served

80 100 150 50

80 180 330 380

Job Run time Delay Turnaround

1 80 0 80

2 100 80 180

3 150 180 330

4 50 330 380

Avg 95 148 243

First Come, First Served

80 100 150 50

80 180 330 380

Job Run time Delay Turnaround Delay %

1 80 0 80 0%

2 100 80 180 80%

3 150 180 330 120%

4 50 330 380 660%

Avg 95 148 243 215%

Shortest Job First

Job Run time Delay Turnaround Delay %

1 80

2 100

3 150

4 50

Avg 95

Shortest Job First

50

50

Job Run time Delay Turnaround Delay %

1 80

2 100

3 150

4 50 0 50 0%

Avg 95

Shortest Job First

8050

13050

Job Run time Delay Turnaround Delay %

1 80 50 130 63%

2 100

3 150

4 50 0 50 0%

Avg 95

Shortest Job First

80 10050

130 23050

Job Run time Delay Turnaround Delay %

1 80 50 130 63%

2 100 130 230 130%

3 150

4 50 0 50 0%

Avg 95

Shortest Job First

80 100 15050

130 230 38050

Job Run time Delay Turnaround Delay %

1 80 50 130 63%

2 100 130 230 130%

3 150 230 380 153%

4 50 0 50 0%

Avg 95 103 198 87%

Pre-emptive Round Robin

Job Run time Delay Turnaround Delay %

1 80

2 100

3 150

4 50

Avg 95

Pre-emptive Round Robin

Job Run time Delay Turnaround Delay %

1 80 0 0

2 100

3 150

4 50

Avg 95

Pre-emptive Round Robin

Job Run time Delay Turnaround Delay %

1 80 0 0

2 100 10 10%

3 150

4 50

Avg 95

Pre-emptive Round Robin

Job Run time Delay Turnaround Delay %

1 80 0 0

2 100 10 10%

3 150 20 13%

4 50

Avg 95

Pre-emptive Round Robin

Job Run time Delay Turnaround Delay %

1 80 0 0

2 100 10 10%

3 150 20 13%

4 50 30 60%

Avg 95 15 21%

Pre-emptive Round Robin

Job Run time Delay Turnaround Delay %

1 80 0 0

2 100 10 10%

3 150 20 13%

4 50 30 60%

Avg 95 15 21%

Pre-emptive Round Robin

Job Run time Delay Turnaround Delay %

1 80 0 0

2 100 10 10%

3 150 20 13%

4 50 30 200 60%

Avg 95 15 21%

200

Pre-emptive Round Robin

Job Run time Delay Turnaround Delay %

1 80 0 280 0

2 100 10 10%

3 150 20 13%

4 50 30 200 60%

Avg 95 15 21%

200 280

Pre-emptive Round Robin

Job Run time Delay Turnaround Delay %

1 80 0 280 0

2 100 10 330 10%

3 150 20 13%

4 50 30 200 60%

Avg 95 15 21%

200 330280

Pre-emptive Round Robin

Job Run time Delay Turnaround Delay %

1 80 0 280 0

2 100 10 330 10%

3 150 20 380 13%

4 50 30 200 60%

Avg 95 15 298 21%

200 380330280

Average Delay Turnaround Delay %
First come,
first served 148 243 215%

Shortest
time first 103 198 87%

Pre-emptive
round robin 15 298 21%

CPU Scheduling

• First come, first served
– Sounds fair
– Easy to implement!

What are we optimizing? What's "fair"?

CPU Scheduling

• First come, first served
• Shortest job first

– Sounds good, unless you're a long job
– How do you know how long it will take?

What are we optimizing? What's "fair"?

CPU Scheduling

• First come, first served
• Shortest job first
• Round robin

– Pre-emptive (harsh)
– Complicated, expensive
– Everyone makes some progress quickly

What are we optimizing? What's "fair"?

It's better than that....
But more complicated:

• Processes block frequently

– Waiting for input (keyboard, disk, ...)

– Waiting for output to complete

– Waiting for page swap

– Waiting for some other resource

It's better than that....
But more complicated:

• Processes block frequently

– Waiting for input (keyboard, disk, ...)

– Waiting for output to complete

– Waiting for page swap

– Waiting for some other resource

• Interaction with memory
management strategy

RunningRunningRunningRunning

Process States – with Priority

RunningRunningRunningRunning

LowLowLowLow
CPU hogCPU hogCPU hogCPU hog

Time Limit

Process States – with Priority

RunningRunningRunningRunning

LowLowLowLow
CPU hogCPU hogCPU hogCPU hog

Time Limit

Disk/Net I/O
Block

MediumMediumMediumMedium
I/O hogI/O hogI/O hogI/O hog

Process States – with Priority

RunningRunningRunningRunning

LowLowLowLow
CPU hogCPU hogCPU hogCPU hog

Time Limit

Disk/Net I/O
Block

User I/O
BlockHighHighHighHigh

I/O boundI/O boundI/O boundI/O bound

MediumMediumMediumMedium
I/O hogI/O hogI/O hogI/O hog

Process States – with Priority

RunningRunningRunningRunning

LowLowLowLow
CPU hogCPU hogCPU hogCPU hog

Time Limit

Disk/Net I/O
Block

User I/O
BlockHighHighHighHigh

I/O boundI/O boundI/O boundI/O bound

MediumMediumMediumMedium
I/O hogI/O hogI/O hogI/O hog

Paging
Block

Page Fault

Process States – with Priority

Process Control Block

• Location of each page in memory (page
map table)

• Saved accumulator, program counter,
base & bound register values, status
bits...

• State (running, waiting, ready)
• Priority

*

