
Intro to Computer Science

Pep/8 Calculator Project

The purpose of this project is to build a simple calculator program in Pep/8 that supports +, -, *, /

and parentheses, as well as the TI feature of retaining the last answer and being able to use it to

start off the next calculation.

To complete this project without driving yourself crazy, you will need to use the Pep/8 CALL

and RETn Pep/8 instructions to create subprogram abstractions similar to the methods of Alice.

See Figure 6.18 in the Pep/8 Help Examples for an example of them. To accomplish Milestone 9

and higher you’re going to want to use the Index register to implement a “stack”. Get the

handout from MrH on how to do this when you are past Milestone 5.

The Milestones for this project are listed below. They are cumulative; for example, Milestone 5

must include all the functionality of Milestones 1-4 except that Milestone 5’s Use Answer

functionality can be omitted from Milestones 6-10 as noted below.

1 +/- Lines The user enters a number, then a plus or minus, then another number,

and the program outputs the sum. Report an error if the user enters

something besides a + or – as the operator. Each entry is on a

separate line (the user presses Enter after each one). For example:
34

+

2

=36

-2

-

4

=-6

3

*

3

Error: invalid expression

Note that this allows you to use DECI and CHARI; it’s OK to let

DECI terminate the program if the user enters an invalid number.

2 Detect

Overflow

Detect and report any two’s complement overflow as an error on entry

or after an operation. For example:
32767

+

2

Error: overflow

32768

Error: overflow

-32768

-

1

Error: overflow

3 Multiply Support * for multiply, including positive and negative numbers.

Detect and report overflow as an error.

4 Divide Support / for divide, including positive and negative numbers. This is

integer division, rounded down; that is, 5/3 = 1. Detect and report

division by zero as an error.

5 n op n From here on, use a single line to enter the complete expression to be

evaluated. You must continue to detect and report overflow and

division by 0. For this Milestone, the valid expressions are a single

digit, followed by a +, -, * or /, and then another single digit. No

spaces are allowed. From now on, YOU must detect and report any

invalid expression, and allow the user to continue by entering a new

expression.

6 Use Answer Save the result of the last operation, and use it if the user enters an

operator first, as a TI-83 does. Note that this means you are going to

have to use CHARI for the first input, and if it’s a number, create an

integer from the string of characters entered, including detecting

overflow and invalid characters! This will also temporarily prevent

you from entering a negative number first.

7 num op num Allow multi-digit numbers. For example:
12*12

=144

8 +/- numbers Support a leading + or – with any number to indicate positive or

negative. There is no separate “negative” sign like the TI calculator

has, so you can’t start an expression with a negative number unless

the previous answer was a 0. For example:
-4+2

=-38

0

=0

-4+2

=-2

9 multi-op Allow any number of operators strung together, but simply done in

order (ignoring PMDAS). For example:
0-4+2

=-2

3+4*-3

=-21

10 MDAS Apply the usual order-of-operations rules:
3+4*3

=15

2*3+2+4*3

=20

This can be done without a stack, but it’s probably easier with one,

and you’re going to need it for the next Milestone anyway.

11 PMDAS Add parentheses. Any number of parentheses are allowed:
((2+3)*2+1)*4

=44

(2)

=2

(((2+3)))

=5

You should submit only one .pep file for a Milestone.

For full credit for the Milestone, it must:

1. Have a comment copyright notice at the top, claiming your ownership of the code

2. Be organized into major blocks with comments before each that:

a. Says what the block does (as in "Finds the GCD of two positive integers")

b. Explains at a high-level how it works (as in "Subtracts the larger number from the

smaller one until they're equal")

c. Lists all sources (web or otherwise), including the specific ideas that you used

from each source.

3. Uses the standard tab convention to separate labels, instructions, and comments

4. Doesn't contain significant amounts of duplicated code that could be eliminated with

subprograms.

