Everybody wants to be Noble

 Please, <u>please</u> let me have 8 valence electrons!

- Fine print: or 2, if I'm really close to Helium

 I really, <u>really</u> want my last s and p orbitals to be full

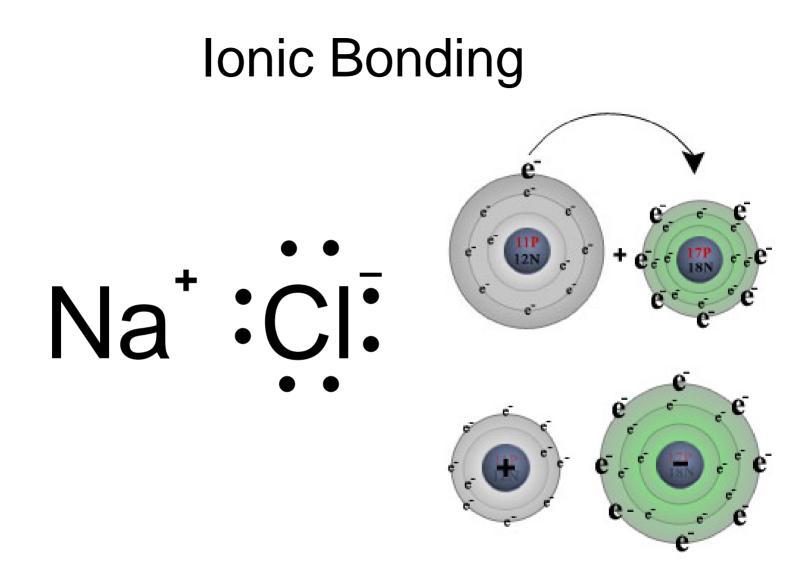
- OK, just my 1s if I don't have any p's

• I am sworn to follow the Octet Rule

- With the exception for Helium, of course

Oxidation Number

+1 +2									+3		-3	-2	-1	
1 H 1.00797													1 H 1.00797	2 He 4.0026
3 Li 6.939 9.0122									5 B 10.811	6 12.0112	7 N 14.0067	8 15.9994	9 F 18.9984	10 Ne 20.183
11 12 Na Mg 22.9898 24.312									13 AI 26.9815		15 P 30.9738		17 CI 35.453	18 Ar 39.948
	21 22 Sc Ti 44.956 47.9	23 V 50.942	24 Cr Mn 51.996 54.9380	26 Fe 55.847	27 Co 58.9332	28 Ni 58.71	29 Cu 63.54	30 Zn 65.37	31 Ga 69.72	32 Ge 72.59	33 As 74.9216	34 Se 78.96	35 Br 79.909	36 Kr 83.80
	39 Y 88.905 91.2	41 Nb 92.906	42 Mo 95.94 (99)	44 Ru 101.07	45 Rh 102.905	46 Pd 106.4	47 Ag 107.870	48 Cd 112.40	49 In 114.82	50 Sn 118.69	51 Sb 121.75	52 Te 127.60	53 126.904	54 Xe 131.30
55 56 Cs Ba 132.905 137.34	*57 72 La H1 138.91 178.4	• Ta 9 180.948	74 75 W Re 183.85 186.2	76 Os 190.2	77 Ir 192.2	78 Pt 195.09	79 Au 196.967	80 Hg 200.59	81 TI 204.37	82 Pb 207.19	83 Bi 208.980	84 Po (210)	85 At (210)	86 Rn (222)
87 88 Fr Ra (223) (226)	AC (227) 104 Bf (261)	105 Db (262)	106 107 Sg Bh (265) (262)	108 HS (265)	109 Mt (266)	110 ? (271)	111 ? (272)	112 ? (277)						


lons

• Cations – positive charge

Cation = + itive

• Anions – negative charge

A n ion = negative

http://www.visionlearning.com/library/module_viewer.php?mid=55

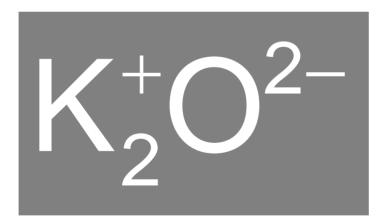
Ionic Bonding

- The bond is formed through the transfer of electrons
- Electrons are transferred to achieve noble gas configuration
- Cations and anions are held together by their opposite charges
- Ionic compounds are called <u>salts</u>.

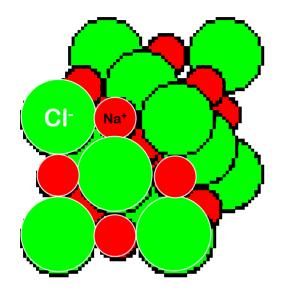
Names

- Start with the cation (metal) name
- Add the first part of the anion (nonmetal) name, with "ide" to the end

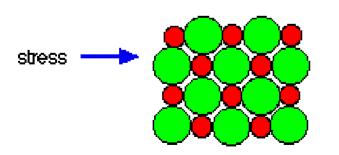
Mg²⁺O²⁻

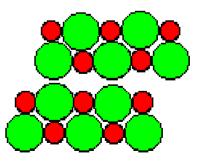

Magnesium Oxide

Anion Names

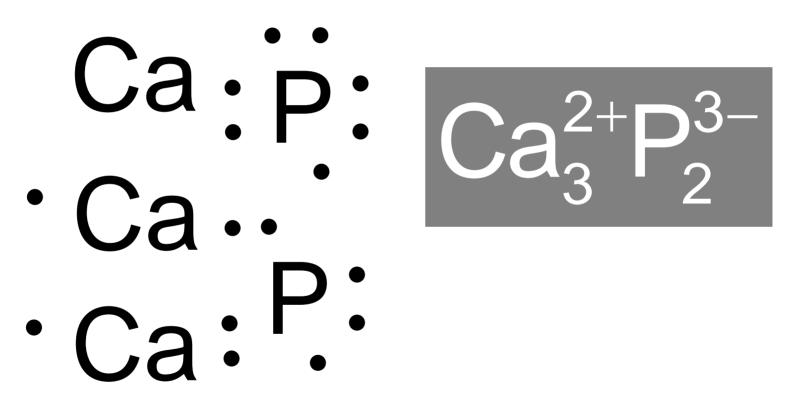

Nitrogen Oxygen **Fluorine Phosphorus Sulfur** Chlorine **Bromine** lodine

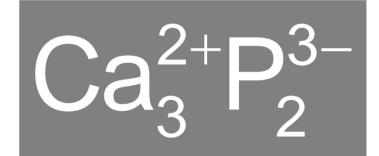
Nitride Oxide Fluoride **Phosphide** Sulfide Chloride **Bromide** lodide


K.: O: K.



Potassium Oxide





Ionic Compounds

- Form crystals a "lattice"
- Hard and brittle
- Very high melting and boiling points
- Conduct electricity <u>when dissolved in</u> <u>water</u>

